
A
R
T
IC

LE
Copyright © 2017 by American Scientific Publishers

All rights reserved.

Printed in the United States of America

Journal of Advanced Physics
Vol. 6, pp. 430–433, 2017
(www.aspbs.com/jap)

Remarks on Fractional Hamilton-Jacobi Formalism
with Second-Order Discrete Lagrangian Systems
Eyad Hasan Hasan1,∗ and Jihad H. Asad2

1Applied Physics Department, Faculty of Science, Tafila Technical University O. Box: 179, Tafila 66110, Jordan
2Department of Physics, College of Arts and Sciences, Palestine Technical University, P.O. Box 7, Tulkarm, 300, Palestine

In this paper, we examined the Hamilton-Jacobi formulation for discrete Lagrangian systems containing second-
order fractional derivatives. The fractional Euler-Lagrange equations for the calculus of variations problem for
these systems are analyzed. The Hamilton’s equations of motion for these systems are derived. The equiv-
alence between the fractional Lagrangian and the fractional Hamiltonian formalism are achieved. We have
examined one example to illustrate the formalism.
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1. INTRODUCTION
The study of fractional calculus has become a novel area
in various branches of science, applied mathematics, phys-
ical systems and engineering,1–8 starting from the early
development by Riewe9�10 of the generalized Hamiltonian
formulation, then this formalism has found a wide range
of applications.1–8 Riewe has studied non-conservative
Lagrangian and Hamiltonian mechanics within fractional
calculus.9�10 He has used the fractional calculus to obtain
a formalism which can be applied for both conserva-
tive and non-conservative systems. One can obtain the
Lagrangian and the Hamiltonian equations of motion for
the non-conservative systems. Besides, the generaliza-
tion of Lagrangian and Hamiltonian fractional mechanics
with fractional derivatives were extended and discussed in
details.11–17

The formalism for investigating the fractional varia-
tional problem of Lagrange represents an important part of
fractional calculus and it was discussed by Agrawal,11�12

and this formalism can be extended to Lagrangians sys-
tems with higher derivatives. Theories associated with
higher-order Lagrangians systems have been discussed by
Ostrogradski. In the Ostrogradski’s formalism, the Euler’s
and Hamilton’s equations of motion were derived and
then, his formalism was extended to singular systems.18–23

Recently, the fractional Hamiltonian analysis for higher-
order derivatives systems were investigated for nonsin-
gular systems and the generalization of Ostrogradski’s
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formulation was discussed within framework of fractional
calculus.24

This paper is organized as follows: In Section 2, the
basic definitions of fractional derivatives are reviewed
briefly. In Section 3, the fractional variational prob-
lem with second-order Lagrangians are investigated and
the Euler-Lagrange equations are derived. In Section 4,
the fractional Hamiltonian formalism for second-order
Lagrangian system is investigated. In Section 5, one illus-
trative example is examined. The work closes with some
concluding remarks in Section 6.

2. BASIC DEFINITIONS
In this section, we briefly review some fundamen-
tal definitions of the fractional derivative in Agrawal
works.11�12 The left Riemann-Liouville fractional deriva-
tive is defined as

aD
�
t f �t�=

1
��n−��

(
d

dt

)n∫ t

a
�t−��n−�−1f ���d� (1)

and the right Riemann-Liouville fractional derivative has
the form

tD
�
b f �t�=

1
��n−��

(
− d

dt

)n∫ b

t
��−t�n−�−1f ���d� (2)

Where � represents the order of derivative such that
n−1≤ �≤ n. If � is an integer, these derivatives are
defined as follows

aD
�
t f �t�=

(
d

dt

)�

f �t�

tD
�
b f �t�=

(
− d

dt

)�

f �t�� �= 1�2� � � �

(3)
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The RL fractional derivatives have the general properties
can be written as

aD
p
t �aD

−q
t f �t��= aD

p−q
t f �t� (4a)

under the assumptions that f �t� is continuous and
p ≥ q ≥ 0. For p > 0 and t > a, we get

aD
p
t �aD

−p
t f �t��= f �t� (4b)

the general formula of semi-group property is written as2

aD
�
t �aD

	
t �f �t�= aD

�+	
t f �t� (4c)

Let f and g are two continuous functions on [a�b]. Then,
for all t ∈ 
a� b�, the following property holds: For

m>0�
∫ b

a
�aD

m
t f �t��g�t�dt=

∫ b

a
f �t��xD

m
b g�t��dt (4d)

3. THE FRACTIONAL VARIATIONAL
PROBLEM WITH SECOND-ORDER
LAGRANGIANS

The Lagrangian of the fractional calculus of variational
problem has the form

L�q� aD
�
t q� tD

	
b q� aD

2�
t q� tD

2	
b q� t� (5)

All functions q�t� have continuous LRLFD of order � and
RRLFD of order 	 for a≤ t ≤ b, and satisfy the boundary
conditions

q�a�= qa� q�b� = qb� aD
�
t q�a�= aD

�
t qa�

tD
	
b q�b� = tD

	
b qb

(6)

Let us examine the extrema of the functional

S
q� aD
�
t q� tD

	
b q�

=
∫
L�q� aD

�
t q� tD

	
b q� aD

2�
t q� tD

2	
b q� t�dt (7)

Where 0<�, 	≤ 1 and �, 	∈R+, the simplest variational
problem can be obtained when � and 	 of our problem
are equal unity.

Let us define a family of functions for the necessary
conditions for the extremum of the action (7) in the form
read as

q�t�= q∗�t�+ ��t� (8)

where q∗�t� is satisfying the extremum of the action (7)
and it is defined as real function. � ∈ R is a constant,
and the function  defined in 
a� b� satisfy the boundary
conditions

�a�= �b� = 0 (9a)

̇�a�= ̇�b�= 0 (9b)

We shall define the set of linear operators as follows

aD
�
t q�t�= aD

�
t q

∗�t�+ �aD
�
t �t� (10a)

tD
	
b q�t�= tD

	
b q

∗�t�+ �tD
	
b �t� (10b)

aD
2�
t q�t�= aD

2�
t q∗�t�+ �aD

2�
t �t� (10c)

tD
2	
b q�t�= tD

2	
b q∗�t�+ �tD

2	
b �t� (10d)

Substituting Eqs. (8) and (10) into Eq. (7), one can find
for each �t�

S
∈� =
∫ b

a
L�t� q ∗+ ∈ � aD

�
t q ∗+ ∈ aD

�
t �

tD
	
b q ∗+ ∈ tD

	
b � aD

2�
t q ∗+ ∈ aD

2�
t 

+ tD
2	
b q ∗+ ∈ tD

2	
b �dt (11)

is a function of ∈ only. One can note that the action S�∈�
is extremum at ∈= 0�
Now, differentiate Eq. (11) with respect to ∈; we can

obtain the variation of the action S
q� aD
�
t q� tD

	
b q� at q�t�

along �t�

dS

d∈ =
∫ b

a

[
�L

�q
+ �L

�aD
�
t q

aD
�
t +

�L

�tD
	
b

tD
	
b

+ �L

�aD
2�
t q aD

2�
t + �L

�tD
2	
b q

tD
2	
b 

]
dt (12)

Now, we shall examine the extremum condition for the
action S
∈� to have an extremum is that dS/d ∈ must be
zero.

∫ b

a

[
�L

�q
+ �L

�aD
�
t q

aD
�
t + �L

�tD
	
b

tD
	
b

+ �L

�aD
2�
t q aD

2�
t + �L

�tD
2	
b q

tD
2	
b 

]
dt = 0 (13)

Using the formula for fractional integration by parts for
the second integral in Eq. (13), one can write2

∫ b

a

�L

�aD
�
t q

aD
�
t dt =

∫ b

a
tD

�
b

(
�L

�aD
�
t q

)
dt (14a)

provided that �L/�aD
�
t q or  is zero at t = a and t = b.

By using Eq. (9a), this condition is satisfied, and it follow
that Eq. (14a) is valid. Similarly, the third, fourth and fifth
integrals in Eq. (13) can be written as

∫ b

a

�L

�tD
	
b q

tD
	
bdt =

∫ b

a
aD

	
t

(
�L

�tD
	
b q

)
dt (14b)

∫ b

a

�L

�aD
2�
t q aD

2�
t dt =

∫ b

a
tD

2�
b

(
�L

�aD
2�
t q

)
dt (14c)

∫ b

a

�L

�tD
2	
b q

tD
2	
b dt =

∫ b

a
aD

2	
t

(
�L

�tD
2	
b q

)
dt (14d)
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Substituting Eq. (14) into Eq. (13), we get

∫ b

a

[
�L

�q
+ tD

�
b

�L

�aD
�
t q

+ aD
	
t

�L

�tD
	
b

+ tD
2�
b

�L

�aD
2�
t q a+ aD

2	
t

�L

�tD
2	
b q

]
dt = 0 (15)

Since  is arbitrary, it follows that

�L

�q
+ tD

�
b

�L

�aD
�
t q

+ aD
	
t

�L

�tD
	
b q

+ tD
2�
b

�L

�aD
2�
t q

+ aD
2	
t

�L

�tD
2	
b q

= 0 (16)

Equation (16) is the formulation of Euler-Lagrange equa-
tion for the fractional calculus of variations problem with
second-order derivatives.

4. FRACTIONAL HAMILTONIAN FORMALISM
The fractional Lagrangian for discrete systems can be
defined as follow:

L�q� aD
�
t q� tD

	
b q� aD

2�
t q� tD

2	
b q� t� (17)

The corresponding Euler-Lagrange equation for the frac-
tional calculus of variational problem are obtained from
extremization the action

S
q� aD
�
t q� tD

	
b q�

=
∫
L�q� aD

�
t q� tD

	
b q� aD

2�
t q� tD

2	
b q� t�dt (18)

and has the form

�L

�q
+ tD

�
b

�L

�aD
�
t q

+ aD
	
t

�L

�tD
	
b q

+ tD
2�
b

�L

�aD
2�
t q

+ aD
2	
t

�L

�tD
2	
b q

= 0 (19)

The fractional canonical momenta are written as24

p� =
�L

�aD
�
t q

− aD
�
t

(
�L

�aD
2�
t q

)
� (20a)

p	 =
�L

�tD
	
b q

− tD
	
b

(
�L

�tD
2	
b q

)
� (20b)

�� =
�L

�aD
2�
t q

� (20c)

�	 =
�L

�tD
2	
b q

(20d)

The fractional Hamiltonian can be written as

H = p�aD
�
t q+p	tD

	
b q+��aD

2�
t q+�	tD

2	
b q−L (21)

The total differential of this Hamiltonian is given by

dH = p�daD
�
t q+dp�aD

�
t q+p	dtD

	
b q+dp	tD

	
b q

+��daD
2�
t q+ aD

2�
t qd��+�	dtD

2	
b q

+ tD
2	
b qd�	−

�L

�q
dq− �L

�aD
�
t q

daD
	
t q

− �L

�tD
	
b q

dtD
	
b q−

�L

�aD
2�
t q

daD
2�
t q

− �L

�tD
2	
b q

dtD
2	
b q− �L

�t
dt (22)

Substituting the values of the momenta from Eq. (20) and
the value of �L/�q from Eq. (19) in Eq. (22), we get

dH = dp�aD
�
t q+dp	tD

	
b q+ aD

2�
t qd��+ tD

2	
b qd�	

− aD
�
t ��daD

�
t q− tD

	
b�	dtD

	
b q+ 
tD

	
b �p�

+ aD
�
t ���+ aD

�
t �p	+ tD

	
b�	�+ tD

2�
b ��

+ aD
2	
t �	� dq−

�L

�t
dt (23)

The Hamiltonian function is defined as

H = �q� aD
�
t q� tD

	
b q�p��p	�����	� t� (24)

Thus, the total differential of this function gives

dH = �H

�q
dq+ �H

�aD
�
t q

daD
�
t q+

�H

�tD
	
b q

dtD
	
b q

+ �H

�p�

dp�+
�H

�p	

dp	

�H

���

d��

+ �H

��	

d�	+
�H

�t
dt (25)

Comparing Eqs. (23) and (25), we get the following
Hamilton’s equations of motion and they can be written as

�H

�t
=−�L

�t
�

�H

�p�

= aD
�
t q�

�H

�p	

= tD
	
b q�

�H

�aD
�
t q

=−aD
�
t ���

�H

�tD
	
b q

=−tD
	
b �	�

�H

���

= aD
2�
t q�

�H

��	

= tD
2	
b q

�H

�q
= 
tD

	
b �p�+ aD

�
t ���+ aD

�
t �p	+ tD

	
b�	�

+ tD
2�
b ��+ aD

2	
t �	� (26)

It is interesting to notice that there are equivalence between
the fractional Lagrangian Eq. (16) and the fractional
Hamiltonian formalism Eq. (26). In other words, one can
obtain the same results for the equations of motion using
the two formalisms.
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5. EXAMPLE
As a first example let us start with the following second-
order regular (discrete) Lagrangian:21�25

L= 1
2
�q̈2− q̇2� (27)

The corresponding fractional Lagrangian

L′ = 1
2
�aD

2�
t q�2− 1

2
�aD

�
t q�

2 (28)

The corresponding Euler-Lagrange equation corresponding
to Eq. (28) becomes

−tD
�
b aD

�
t q+ tD

2�
b aD

2�
t q = 0 (29)

For �→ 1, this equation leads to the classical solution

q = A+Bt+C cos t+D sin t (30)

The fractional canonical momenta are written as

p� =−aD
�
t q− aD

3�
t q� p	 = 0�

�� = aD
2�
t q� �	 = 0

(31)

The fractional Hamiltonian reads as

H = p�aD
�
t q+

1
2
����

2+ 1
2
�aD

�
t q�

2 (32)

One can obtain the same result of Eq. (29) using
Hamilton’s equations of motion Eq. (26)

�H

�p�

= aD
�
t q�

�H

�p	

= tD
	
b q = 0�

�H

�aD
�
t q

=−aD
�
t �� = p�+ aD

�
t q�

�H

�tD
	
b q

=−tD
	
b �	 = 0�

�H

���

= aD
2�
t q = ���

�H

��	

= tD
2	
b q = 0

�H

�q
= tD

	
b �p�+ aD

�
t ���+ tD

2�
b �� = 0

=−tD
	
b aD

�
t q+ tD

2�
b aD

2�
t q (33)

It observed that the fractional Lagrangian Eq. (29) is in
exact agreement with the fractional Hamiltonian formula-
tion Eq. (33).

Also, we conclude that the classical solutions are
obtained if � and 	 are both equal unity in Eq. (33) and
they have the same results of Eq. (30).

6. CONCLUSION
Following to Agrawal works, we have considered
the generalized mechanics to obtain the fractional
Hamiltonian formulation for second-order fractional dis-
crete Lagrangian systems using the calculus of variations.

The fractional Euler-Lagrange equations for these sys-
tems were derived. We have constructed the fractional
Hamiltonian for these systems. The Hamiltonian equations
of motion for these systems were obtained in a similar
manner to the usual mechanics. It was proven that there
were equivalence between the Lagrangian containing frac-
tional derivatives and the fractional Hamiltonian formal-
ism. One illustrative example was discussed.
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